Controlled self-assembly of gold nanoparticles mediated by novel organic molecular cages

نویسندگان

  • Wounjhang Park
  • Kazunori Emoto
  • Yinghua Jin
  • Akihiro Shimizu
  • Venkata A. Tamma
  • Wei Zhang
چکیده

Artificial nanocomposite structures offer a pathway to the development of engineered materials with novel macroscopic properties. Manufacturing the composite materials in a highly efficient yet precise manner remains a challenge and self-assembly of functional nanomaterials offers an attractive solution. In this paper, shape-persistent threedimensional cage molecules have been used, for the first time, for the selfassembly of gold nanoparticles. The modular construction of cage molecules allows for precise control of inter-particle spacing down to the molecular level. Furthermore, the ability to change the number and flexibility of binding sites provides a means to tune the self-assembly process. We have designed and synthesized two types of cage molecules equipped with different numbers of binding groups with different flexibility. A systematic analysis of the optical and structural characterizations show that the inter-particle spacing within the self-assembled structures are precisely controlled by the choice of the cage molecules. These results highlight that the new self-assembly approach based on molecular cage linkers provides nanometric control over the self-assembled structure. ©2013 Optical Society of America OCIS codes: (160.3918) Metamaterials; (160.4236) Nanomaterials. References and links 1. S. H. Park and Y. Xia, “Assembly of Mesoscale particles over large areas and its application in fabricating tunable optical filters,” Langmuir 15(1), 266–273 (1999). 2. P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, “Single-crystal colloidal multilayers of controlled thickness,” Chem. Mater. 11(8), 2132–2140 (1999). 3. J. H. Lee, Q. Wu, and W. Park, “Fabrication and optical characterization of gold nanoshell opal,” J. Mater. Res. 21(12), 3215–3221 (2006). 4. S. Kubo, A. Diaz, Y. Tang, T. S. Mayer, I. C. Khoo, and T. E. Mallouk, “Tunability of the refractive index of gold nanoparticle dispersions,” Nano Lett. 7(11), 3418–3423 (2007). 5. J. H. Lee and W. Park, “Three-dimensional metallic photonic crystal based on self-assembled gold nanoshells,” Funct. Mater. Lett. 01(01), 65–69 (2008). 6. J. H. Lee, Q. Wu, and W. Park, “Metal nanocluster metamaterial fabricated by the colloidal self-assembly,” Opt. Lett. 34(4), 443–445 (2009). 7. V. A. Tamma, J. H. Lee, Q. Wu, and W. Park, “Visible frequency magnetic activity in silver nanocluster metamaterial,” Appl. Opt. 49(7), A11–A17 (2010). 8. R. Pratibha, K. Park, I. I. Smalyukh, and W. Park, “Tunable optical metamaterial based on liquid crystal-gold nanosphere composite,” Opt. Express 17(22), 19459–19469 (2009). 9. R. Pratibha, W. Park, and I. I. Smalyukh, “Colloidal gold nanosphere dispersions in smectic liquid crystals and thin nanoparticle-decorated smectic films,” J. Appl. Phys. 107(6), 063511 (2010). 10. S. Y. Park, A. K. R. Lytton-Jean, B. Lee, S. Weigand, G. C. Schatz, and C. A. Mirkin, “DNA-programmable nanoparticle crystallization,” Nature 451(7178), 553–556 (2008). 11. D. Nykypanchuk, M. M. Maye, D. van der Lelie, and O. Gang, “DNA-guided crystallization of colloidal nanoparticles,” Nature 451(7178), 549–552 (2008). 12. Y. Jin, B. A. Voss, R. D. Noble, and W. Zhang, “A shape-persistent organic molecular cage with high selectivity for the adsorption of CO2 over N2.,” Angew. Chem. Int. Ed. Engl. 49(36), 6348–6351 (2010). 13. Y. Jin, B. A. Voss, A. Jin, H. Long, R. D. Noble, and W. Zhang, “Highly CO2-selective organic molecular cages: what determines the CO2 selectivity,” J. Am. Chem. Soc. 133(17), 6650–6658 (2011). #178291 $15.00 USD Received 19 Oct 2012; revised 28 Nov 2012; accepted 21 Dec 2012; published 9 Jan 2013 (C) 2013 OSA 1 February 2013 / Vol. 3, No. 2 / OPTICAL MATERIALS EXPRESS 205 14. Y. Jin, B. A. Voss, R. McCaffrey, C. T. Baggett, R. D. Noble, and W. Zhang, “Microwave-assisted syntheses of highly CO2-selective organic cage frameworks (OCFs),” Chem. Sci. 3(3), 874–877 (2012). 15. C.-X. Zhang, Q. Wang, H. Long, and W. Zhang, “A highly C70 selective shape-persistent rectangular prism constructed through one-step alkyne metathesis,” J. Am. Chem. Soc. 133(51), 20995–21001 (2011). 16. C.-X. Zhang, H. Long, and W. Zhang, “A C84 selective porphyrin macrocycle with an adaptable cavity constructed through alkyne metathesis,” Chem. Commun. (Camb.) 48(49), 6172–6174 (2012). 17. J. Lohrman, C. Zhang, W. Zhang, and S. Q. Ren, “Semiconducting carbon nanotube and covalent organic polyhedron-C60 nanohybrids for light harvesting,” Chem. Commun. (Camb.) 48(67), 8377–8379 (2012). 18. A. Bilić, J. R. Reimers, and N. S. Hush, “Adsorption of pyridine on the gold(111) surface: implications for ‘alligator clips’ for molecular wires,” J. Phys. Chem. B 106(26), 6740–6747 (2002). 19. S. Y. Quek, M. Kamenetska, M. L. Steigerwald, H. J. Choi, S. G. Louie, M. S. Hybertsen, J. B. Neaton, and L. Venkataraman, “Mechanically controlled binary conductance switching of a single-molecule junction,” Nat. Nanotechnol. 4(4), 230–234 (2009). 20. R. Kaminker, M. Lahav, L. Motiei, M. Vartanian, R. Popovitz-Biro, M. A. Iron, and M. E. van der Boom, “Molecular structure-function relations of the optical properties and dimensions of gold nanoparticle assemblies,” Angew. Chem. Int. Ed. Engl. 49(7), 1218–1221 (2010). 21. W. Zhang and J. S. Moore, “Shape-persistent macrocycles: structures and synthetic approaches from arylene and ethynylene building blocks,” Angew. Chem. Int. Ed. Engl. 45(27), 4416–4439 (2006). 22. A. Yu, Z. Liang, J. Cho, and F. Caruso, “Nanostructured electrochemical sensor based on dense gold nanoparticle films,” Nano Lett. 3(9), 1203–1207 (2003). 23. Y. Joseph, I. Besnard, M. Rosenberger, B. Guse, H.-G. Nothofer, J. M. Wessels, U. Wild, A. Knop-Gericke, D. Su, R. Schlogl, A. Yasuda, and T. Vossmeyer, “Self-assembled gold nanoparticle/ alkanedithiol films: preparation, electron microscopy, XPS-analysis, charge transport, and vapor-sensing properties,” J. Phys. Chem. B 107(30), 7406–7413 (2003). 24. A. Cunningham, S. Mühlig, C. Rockstuhl, and T. Bürgi, “Coupling of plasmon resonances in tunable layered arrays of gold nanoparticles,” J. Phys. Chem. C 115(18), 8955–8960 (2011). 25. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH Verlag GmbH & Co. KgaA, 2004). 26. T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4(9), 1627–1631 (2004). 27. W. T. Doyle, “Optical properties of a suspension of metal spheres,” Phys. Rev. B Condens. Matter 39(14), 9852– 9858 (1989). 28. V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges,” J. Phys. Condens. Matter 17(25), 3717–3734 (2005). 29. J. C. M. Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. Lond. A 203(359-371), 385–420 (1904). 30. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). 31. See, for example, G. W. Milton, Theory of Composites (Cambridge University Press, 2004). 32. B. Abeles and J. I. Gittleman, “Composite material films: optical properties and applications,” Appl. Opt. 15(10), 2328–2332 (1976). 33. V. Yannopapas, A. Modinos, and N. Stefanou, “Optical properties of metallodielectric photonic crystals,” Phys. Rev. B 60(8), 5359–5365 (1999). 34. N. Stefanou, V. Karathanos, and A. Modinos, “Scattering of electromagnetic waves by periodic structures,” J. Phys. Condens. Matter 4(36), 7389–7400 (1992). 35. N. Stefanou, V. Yannopapas, and A. Modinos, “MULTEM 2: a new version of the program for transmission and band-structure calculations of photonic crystals,” Comput. Phys. Commun. 132(1-2), 189–196 (2000). 36. A. Moroz and C. Sommers, “Photonic band gaps of three-dimensional face-centered cubic lattices,” J. Phys. Condens. Matter 11(4), 997–1008 (1999). 37. V. Yannopapas, “Effective-medium description of disordered photonic alloys,” J. Opt. Soc. Am. B 23(7), 1414–

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Engineering Nano-aggregates: β-Cyclodextrin Facilitates the Thiol-Gold Nanoparticle Self-Assembly

The structure and morphology of nonmaterial formed by colloidal synthesis represent a subject of interest as it is a factor deciding the physicochemical properties and biological applications of nanostructures. Among various nanoparticles, gold can develop fractal assembled patterns. Herein, we report a nano-aggregate of a thiol-on-gold self-assembled structure and the influence of β-cyclodextr...

متن کامل

Determination of mercury (II) by spectrophotometric method based on self assembly of gold nanoparticles

Due to the binding of the –COO- group with the mercury (II), gold nanoparticlesfunctionalized with glutathione can self-assemble to form a supermolecular network in the HAc-NaAc buffer solution. The aggregation of functionalized gold nanoparticles and mercury (II)caused the shift of maximum absorption peak of the UV-Vis spectrum from 520 nm to 609 nm.Based on this principle, a simple spectropho...

متن کامل

Construction of simple gold nanoparticle aggregates with controlled plasmon–plasmon interactions

We have developed a colloidal assembly for the study of plasmon–plasmon interactions between gold nanoparticles. Colloidal aggregates of controlled size and interparticle spacing were synthesized on silica nanoparticle substrates. Following the immobilization of isolated gold nanoparticles onto silica nanoparticles, the surfaces of the adsorbed gold nanoparticles were functionalized with 4-amin...

متن کامل

Host-guest chemistry with water-soluble gold nanoparticle supraspheres.

The uptake of molecular guests, a hallmark of the supramolecular chemistry of cages and containers, has yet to be documented for soluble assemblies of metal nanoparticles. Here we demonstrate that gold nanoparticle-based supraspheres serve as a host for the hydrophobic uptake, transport and subsequent release of over two million organic guests, exceeding by five orders of magnitude the capaciti...

متن کامل

Surface Enhanced Raman Scattering of Crystal Violet with Low Concentrations Using Self-Assembled Silver and Gold-Silver Core-Shell Nanoparticles

The active substrates in surface enhanced Raman scattering (SERS) spectroscopy were prepared through self-assembly of nanoparticles on functionalized glasses. Colloidal silver nanoparticles (Ag NPs) were prepared chemically in two different sizes by reduction of AgNO3 using trisodium citrate and sodium borohydride. Gold–silver core–shell nanoparticles were also prepared to compare between the o...

متن کامل

Interfacial polygonal patterning via surfactant-mediated self-assembly of gold nanoparticles

In this work, we explored the formation processes of interfacial polygonal patterning via surfactant-mediated self-assembly of gold nanoparticles (AuNPs). We found that a balance between DDT-capped AuNPs and PVP-passivated AuNPs is a key to making these inorganic-organic thin films. The interfacial polygonal patterning possesses many processing advantages and flexibilities, such as controllable...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013